CAS NUMBER: 79-06-1

SYNONYM: 2-propenamide

Product Description

Appearance: White powder

Molecular formula: C3H5NO

Molecular weight: 71.08

Melting point: $84.5^{\circ} \mathrm{C}$,
although stable in the dark, it readily polymerizes at its melting point, in solution or under ultraviolet light. 1

Special tests: DNase, RNase and Protease were not detected per procedures on lot-specific data sheet. Acrylamide as a monomer is used in a variety of synthetic processes to form polymers, copolymers. It is readily polymerized in the presence of free radicals, usually in aqueous solutions. Polyacrylamide plastics have numerous commercial applications, due in part to the tendency of polyacrylamide to adsorb many times its own mass in water.

In biochemistry, its principle use is in the preparation of polyacrylamide gels, using suitable cross-linkage agents, for use in electrophoresis separation techniques. Common reaction initiators are riboflavin, ammonium persulfate; varying the ratio of acrylamide to crosslinking agent permits the formation of a gel with predictable average pore size and texture. A number of excellent laboratory manuals give specific protocols for preparing "PAGE" (Polyacrylamide Gel Electrophoresis)
gels; see page 2 for a partial reference list. Acrylamide has a tendency to hydrolyze under acidic or basic conditions to form acrylic acid.

Acrylic acid and any ionic impurities in the acrylamide can have significant effects on the performance of the PAGE gel formed, since the voltage across the gel is affected by the ionic charge of the gel and usage buffers. Sigma tests each lot of A9099 for its suitability for use in electrophoresis of nucleic acids (more detail is available on lot-specific information sheets sent with the product.) Several other products are also available A 3553, Electrophoresis Reagent, which has a higher purity specification and additional testing for trace impurities, solution conductivity and acrylic acid content; and A 4058, which is a ready-to-use 40% solution prepared from A 3553; A8887 is also of high purity, but has not received as extensive testing for application suitability. NOTE:

Acrylamide as a monomer is considered toxic, directly affecting the nervous system, and it may reasonably be considered to be a carcinogen. 4

Acrylamide is readily
absorbed through intact skin from aqueous solutions. 1
Please consult the Material Safety Data Sheet and appropriate safety procedures before handling this material. Once polymerized, the solid POLYacrylamide is considered quite safe, although PAGE gels should still be handled with gloves under the assumption that they may still contain unreacted monomer.

Storage/Stability
If acrylamide is kept protected from light, it is expected to be stable indefinitely at room temperature. After three weeks storage at $50^{\circ} \mathrm{C}$, there is no evidence of polymer formation and only slight yellowing occurs.

Even after 24 hours at $80^{\circ} \mathrm{C}$ (slightly below melting), pure samples show little or no polymer formation. 3 It
should be evaluated for continued suitability every three years.

Acrylamide is routinely tested at $250 \mathrm{mg} / \mathrm{mL}$ in water, giving a clear colorless solution. It is soluble at least to 40\% (w/v) in water2
, and reportedly up to $215 \mathrm{~g} / 100 \mathrm{~mL}$
in water at $30^{\circ} \mathrm{C} .1$

It is soluble in methanol
($155 \mathrm{~g} / 100 \mathrm{~mL})$, ethanol ($86 \mathrm{~g} / 100 \mathrm{~mL}$), acetone
($63.1 \mathrm{~g} / 100 \mathrm{~mL}$); only minimally soluble in benzene or heptane. 1

Solutions should be stable at $2-8{ }^{\circ} \mathrm{C}$ for at least a year if stored protected from light.

